
Investigating High Performance RMA Interfaces for the MPI-3 Standard

Vinod Tipparaju
Oak Ridge National Laboratory

William Gropp
University of Illinois

Hubert Ritzdorf
NEC Europe Ltd

Rajeev Thakur
Argonne National Laboratory

Jesper L. Träff
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Abstract—The MPI-2 Standard, released in 1997, defined
an interface for one-sided communication, also known as
remote memory access (RMA). It was designed with the
goal that it should permit efficient implementations on
multiple platforms and networking technologies, and also
in heterogeneous environments and non-cache-coherent sys-
tems. Nonetheless, even 12 years after its existence, the
MPI-2 RMA interface remains scarcely used for a number
of reasons. This paper discusses the limitations of the MPI-2
RMA specification, outlines the goals and requirements for a
new RMA API that would better meet the needs of both users
and implementers, and presents a strawman proposal for such
an API. We also study the tradeoffs facing the design of this
new API and discuss how it may be implemented efficiently
on both cache-coherent and non-cache-coherent systems.

I. INTRODUCTION

One-sided communication or remote memory access
(RMA) is a promising paradigm for high-performance com-
munication on low-latency networks and over shared mem-
ory. The main advantage of RMA lies in its asynchronous
nature: Unlike in point-to-point (or two-sided) communica-
tion where the sender and receiver explicitly call send and
receive functions, in RMA only the origin process calls
the data-transfer function (put or get), and data transfer
takes place without the target process explicitly calling any
function to transfer the data. This model allows parallel
programs to be less synchronizing and allows communica-
tion hardware to move data from one process to another
with maximal efficiency. In addition, by eliminating the “tag
matching” that is a key part of the send-receive model, RMA
offers the promise of lower latency for short data transfers
than the two-sided approach.

Because of the growing popularity of RMA, the MPI
Forum defined a specification for RMA as part of the
MPI-2 standard [1]. MPI defines three data-transfer func-
tions for RMA: put (remote write), get (remote read), and
accumulate (remote update). These functions must be used
in conjunction with any of three synchronization methods,
as shown in Figure 1. The synchronization methods enable
the target process to indicate when its memory is ready
for being read or written by a remote process, and they
also specify when the data transfer is completed. The first
two synchronization methods in Figure 1 are known as
active-target synchronization because the target processes
must participate in the synchronization. The third method is
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Figure 1. The three synchronization methods for one-sided communication
in MPI-2. The numerical arguments indicate the target rank.

known as passive-target synchronization because the target
does not need to call any function.

Many MPI implementations support RMA, with varying
levels of optimization [2]–[10]. Nonetheless, even 12 years
after its existence in the MPI standard, the MPI RMA func-
tionality is rarely used in applications (with some notable
exceptions such as [11]). One reason is that the synchro-
nization methods, although needed in a programming model,
add overhead to the basic data transfer functions. Other
reasons include differences between what the MPI RMA
model supports and what users seem to expect an RMA
model to do [12], [13].

The MPI-3 standard, currently under development by
the MPI Forum, provides an opportunity to address the
limitations of the MPI-2 RMA interface in a way that better
meets the needs of both users and implementers. In this
paper, we examine the reasons for revisiting the MPI-2 RMA
interface, present a strawman proposal that could be used
as a starting point for defining a new interface in MPI-3,
and discuss architectures that pose interesting challenges for
implementing this interface.



II. NEED FOR A BETTER RMA INTERFACE

Partitioned Global Address Space (PGAS) languages such
as UPC [14] and Co-Array Fortran [15] (under consideration
as part of Fortran 2008) rely on efficient RMA operations.
Library-based RMA approaches, such as SHMEM [16] and
Global Arrays [17], have been used by a number of impor-
tant applications. It is natural to look at the MPI-2 RMA
interface as an implementation layer for these programming
models. Doing so, however, has identified a number of
mismatches between the MPI-2 RMA model and the needs
of both PGAS languages and libraries such as Global Arrays.

A. Limitations of the MPI-2 RMA Model

In the last decade, several criticisms of the MPI-2 RMA
model have been brought up by the user community. Some
of the issues raised were in the context of PGAS lan-
guages [12], [13]. As described in Section I, MPI-2 RMA
defines three synchronization modes. The passive target
mode is more suitable for use as a compilation target
for PGAS languages because of its truly one-sided nature.
However, MPI-2 RMA requires collective creation (using
MPI_Win_create) of memory that will participate in
RMA operations. This is not possible in PGAS languages
that permit all (or most) of memory to be accessed by remote
memory operations. To enforce a precise correctness model,
MPI-2 RMA makes overlapping RMA operations with Get
and/or Put erroneous; PGAS languages make overlapping
operations valid but undefined. MPI also has restrictions on
the use of overlapping memory windows [12].

B. Memory Consistency Models

Users typically view remote memory accesses as ex-
tensions to load/store operations in a distributed memory
environment. Thus, RMA is central to any Global Ad-
dress Space (GAS) or Partitioned Global Address Space
language or library. The (P)GAS languages and libraries
typically define an abstract memory model that represents
a shared-memory machine. This memory model defines the
consistency guarantees for memory accesses. This means
that despite the actual characteristics of the underlying
system, memory, and network, these consistency guarantees
must be met. Typically an RMA interface used by the
(P)GAS languages and libraries is expected to enforce the
consistency guarantees that are required for memory access.
The challenge for a low-level RMA interface is to provide
an efficient match to both the consistency models that are
efficiently implemented by the system and the consistency
models expected in the programming models.

MPI-2 selected an RMA model that could be implemented
efficiently on a wide range of platforms (as discussed in
Section III-B2). However, this model is not a good match
to PGAS and similar programming models. Similarly, the
consistency models used in PGAS languages do not fit all
fast parallel systems. Hence it is important for an RMA

interface to allow for enforcement of a variety of consistency
models in its memory access. Some of the memory consis-
tency models that are used in (P)GAS languages distinguish
memory accesses by category of access. For example, a
language may distinguish between sections of the code that
need strict consistency from its remote memory access and
sections of the code that could do with weak consistency.
Such usage warrants flexibility from an RMA interface.
However, working around different memory models and
hybrid architectures that have a vaguely defined memory
model and yet give consistency guarantees to a memory
access is not a trivial task. For example, on a machine that
is not cache coherent, ensuring write consistency for remote
accesses is not trivial.

III. CONSTRAINTS ON A SOLUTION

The limitations of the MPI-2 RMA model and users’
perception of an RMA model have been described. However,
many of these limitations originally were the result of an
attempt to guarantee a uniform definition of correctness on
various architectures. These issues need to be revisited with
current and upcoming architectures in mind and based on
what users have come to expect from a RMA model.

When defining an RMA interface, several features must
be considered. These include: what is the consistency model
for remote memory operations, what are the atomicity and
granularity properties of access, and how is completion of
data transfer indicated at both the source and destination.
The following sections describe some of the choices and
illustrate the difficulty in picking one particular choice of
consistency model or completion approach.

A. Memory Model Issues and Properties of Remote Memory
Access

1) Consistency and Completion: Shared memory consis-
tency models are a deep and complex topic. Consistency
for RMA should be defined as it would be for a shared
memory access. Here, we merely discuss some of the
different memory consistency models that elucidate desirable
properties of a remote memory access.

Read/Write Consistency. One of the desired properties
of RMA with respect to a single source (e.g., a single MPI
process) is the guarantee that any value written by the source
to a memory can be observed by a subsequent read from the
same source, when the destination of the write operation
has not been altered by writes from other sources (e.g.,
other MPI processes). This property cannot be guaranteed
even with a shared memory access on a non-cache-coherent
machine. We refer to this as the ordering property of an
RMA operation.

Causal Consistency. Accesses to memory that are
causally unrelated can occur or be observed in any order in
the Causal Consistency model [18]. However, a particular
order has to be agreed among causally related accesses.



For unrelated accesses, the RMA interface should allow
for unrestricted, high-performance, remote memory access
(see Section IV). In order to agree upon a particular order
and enforce it, interfaces for synchronizations, fences, and
verification of remote completion of a RMA operation will
be necessary.

Sequential Consistency. This is a model with strong
semantics that was defined by Lamport [19] as:

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program.

This means that it is not merely sufficient to ensure that the
memory accesses are ordered with respect to a single source.
In addition, multiple, potentially contending, accesses from
different sources must be serialized. Each access at the desti-
nation must occur exclusively. RMA with atomicity property
can achieve this effect. The HPC language community is
reluctant to require sequential consistency due to its potential
performance cost.

Hybrid Consistency. Some models such as Location
Consistency [20] and RAO [21] describe the assumptions
from a memory model (they expect the memory access
layer to satisfy some of these assumptions) and define a
hybrid consistency [22] model that benefits from weaker
consistency for some accesses and strict for others. Orig-
inally proposed by Gao and Sarkar, location consistency
does not rely on the memory coherence assumption. Instead,
the state of a memory location is modeled as a partially
ordered multiset of write and synchronization operations.
The Relaxed Atomic + Order (RAO) model proposed by
Saraswat et al. is another such model. These hybrid models
can benefit from all the three above mentioned properties
(ordering, atomicity and remote completion). For example,
for accesses with weaker consistency, ordering property may
suffice; but accesses with strict consistency will rely on the
atomicity property.

2) Granularity: Remote memory accesses at the granu-
larity of a word match well to a shared memory load/store
style access. However, remote memory accesses have higher
latencies than shared memory accesses. Hence, RMA is
often used to transfer sections of remote memory. Although
consistency is typically defined for accesses with the gran-
ularity of a word, the desired properties of RMA derived
from the consistency requirement apply to RMA for sections
of memory as well. Similarly, completion semantics (such
as remote completion) bear the same meaning, whether the
access is for a word or for a section of remote memory.

Given this diversity of RMA models, it makes sense to
consider a more flexible RMA interface that permits the user
to specify the required features (which we call attributes) of
the RMA model. In the next section, we review the hardware

(architectural) diversity that a successful RMA standard such
as MPI must use effectively.

B. Architectural Issues

A remote memory access interface must work effectively
with a wide range of architectures. Many of the fastest
systems make compromises in the memory system that trade
simplicity in the memory model (such as strict sequential
consistency) with speed. These features vary from lack of
cache coherence to the presence of vector and other special-
purpose processing elements. It is important to consider
these issues.

In discussing various architectures and how their memory
models pose potential challenges in implementing RMA, we
often refer to a Serializer. The serializer is in essence a
mechanism to execute memory access operations on a re-
mote address space in sequence, as described by Arvind and
Maessen [23]. To enforce the atomicity attribute, a serializer
such as this is essential. However, it may not be possible to
implement a serializer efficiently on all architectures.

RMA attributes such as ordering and remote completion,
when they are offered as features by the underlying network,
are trivial to implement. When a network offers a mecha-
nism to check for remote completion but doesn’t guarantee
ordering of data transfers, the ordering attribute can still be
be guaranteed with a slight penalty. Similarly, on a network
with no direct mechanism to check for remote completion
but with message ordering as a natural property, remote
completion may be guaranteed with a slight penalty. How-
ever, on systems with networks that do not have methods to
check for remote completion or message ordering property,
additional software mechanisms may be required even to
allow for ordering and remote completion attributes.

1) Cache-Coherent Systems: On cache-coherent systems,
coherence exists between cache lines on CPU’s, any shared
cache, network, and main memory. Machines of this type
represent most of the Top 500 systems today. The recently
announced 20 PetaFLOP IBM Blue Gene/Q system, Se-
quoia, will also have these characteristics.

On a Cache-Coherent system, RMA communication may
directly use the fastest and the lowest level communication
library available for the system. When ordering is not
guaranteed by the underlying network (e.g., the Quadrics
QSNetII and QSNetIII networks), additional software sup-
port (e.g., a counter for messages or software epochs) may
be required to enforce ordering. Typically, a communication
thread has been used in implementations that allow for
atomic updates of sections of remote memory. This commu-
nication thread could be implicit or explicit. An example of
an implicit communication thread is the handler of an active
message. Examples of explicit communication threads are
the communication helpers used in RMA libraries. The use
of such a thread ensures serialized handling of incoming



messages without the requirement of locks. However, im-
plicit or explicit communication threads may not be available
on some architectures.

An example of a cache-coherent system is the Cray
XT(3/4/5). On the Cray XT at the Sandia National Labo-
ratories, the Catamount kernel [24] does not allow users to
spawn additional threads for communication, and the Portals
communication library [25] on the Cray XT does not support
Active Messages. Thus, to implement atomicity, a coarse-
grained lock is required. The use of these mechanisms results
in low performance for the RMA calls that set the atomicity
attribute. However, if the Compute Node Linux [26] is used
on the XT system, communication threads may still be used
along with the Portals library in the implementation.

Some shared address space architectures with scalar and
vector processing elements, such as the Cray X1E, demon-
strate unique cache properties. On the X1E, local (same
node) accesses cache data and maintain coherence, whereas
remote accesses are not cached. Since coherence exists for
the accesses within a node, it does not pose any additional
challenges in implementing RMA operations.

2) Non-Cache-Coherent Systems: Due to the complexity
and cost of maintaining cache coherence across many pro-
cessors and/or over a network, some high-performance sys-
tems are designed to not provide (full) cache coherency. In
addition, for similar reasons, some architects believe that full
cache coherency may not be supported on multicore chips
should the number of cores become very large. Examples of
non-cache coherent systems are the NEC SX machines.

The NEC SX series are clustered vector systems. The
processor consists of a vector and a scalar unit. The vector
unit accesses the banked memory directly, while the scalar
unit uses a write-through cache to hide memory latencies.
For the SX-9, each node has up to 16 processors, sharing the
same memory via a memory network. Nodes are connected
through a proprietary, high-performance switch. The scalar
caches are not coherent, neither between processors on
different nodes, nor between processors on the same node.
The memory adheres to a relaxed consistency model, and a
memory fence operation is needed to ensure that previous
scalar and vector accesses to memory have completed. Since
data in cache may have been invalidated by a write by
another processor (whether on the same node or on a
different node), it may be necessary to clear the cache or to
circumvent the cache by reading (with vector instructions)
directly from memory. Processors inform other processors
of memory writes by write-fence operations (setting a flag)
or by atomic operations. For RMA, this implies that involve-
ment of the target is needed to either invalidate caches or
otherwise make the process aware of data written by other
processes. Note that MPI-2’s RMA model was designed to
support systems like the SX series.

3) Hybrid Systems with Special Purpose Processing Ele-
ments: Systems with accelerators and special purpose pro-

cessing elements (PE) are not new to the HPC community.
In the recent past, systems with special purpose processing
elements such as the Road Runner [27] system at the Los
Alamos National Laboratory have emerged and continue to
do so. A special purpose PE can both be realized as an MPI
task or as an attached device to an MPI task. If the special
purpose PE (such as an accelerator, FPGA, GPU, or Cell)
were seen as an attached device to an MPI task running on
general purpose CPU, the model used to program and access
that device is orthogonal to MPI and its semantics. However,
when the special purpose processor is seen as an MPI task,
MPI communication to and from the special purpose process
will have to work with the same RMA attributes. However,
given the nature of the special purpose PE’s (such as the
GPU), there are some issues that need special consideration.

Address space and virtual pointer: The address space
in the special purpose processor may be of a different size
than that of the rest of the system. Interface designers have
to account for this when accessing remote memory.

Endianness: The special purpose PE may have a
different endianness. If the architecture doesn’t allow for
switchable endianness, this may pose additional challenges
in data transfers, more so for RMA because of the one-sided
nature of the operations. For example, a system built from
IBM’s POWER architecture and commodity GPUs will most
likely have different endianness for data items.

IV. A STRAWMAN PROPOSAL

In the previous sections, we have described some of the
constraints on an RMA model, both in terms of the software
(programming model) and hardware (RMA support in the
architecture). This leads to a number of design requirements:

1) In order to support RMA to arbitrary locations, no
constraints on memory, such as symmetric allocation
or collective window creation, can be permitted.

2) To allow for overlap of communication with other
operations, nonblocking RMA operations are required.

3) RMA operations that are imprecise (such as access to
overlapping storage) should be permitted, even if the
behavior is undefined.

4) To permit low-latency operations, RMA operations
should be possible in a single routine call (these would
be blocking RMA operations).

5) A user must be able to specify the required level
of consistency, atomicity, and completeness, and the
interface should accommodate that. In addition, it
should be relatively easy to change those requirements
(permitting the use of the most stringent rules while
debugging).

6) The RMA model must support non-cache-coherent
and heterogeneous environments.

7) Transfers of noncontiguous data, including strided
(vector) and scatter/gather must be supported.



8) Scalable completion (a single call for a group of
processes) is required.

These requirements suggest an interface that makes use of
existing MPI concepts such as communicators for groups
of processes, datatypes for heterogeneity and noncontiguous
data, and requests for completion of nonblocking operations.
With these pieces, the key operation becomes
MPI_RMA_put(origin_addr, origin_count,

origin_datatype, target_mem, target_disp,
target_count, target_datatype,
target_rank, comm, RMA_Attributes,
request)

IN origin addr The starting (local) address of
the put

IN origin count the number of entries
IN origin datatype datatype of each entry in origin

buffer
IN target mem object representing the target

memory being accessed
IN target disp displacement from start of tar-

get buffer represented by tar-
get mem

IN target count number of entries in target
buffer

IN target datatype datatype of each entry in target
buffer

IN target rank rank of target
IN comm communicator
IN rma attributes the attributes of this RMA op-

eration
OUT request communication request

In this operation, the rma_attributes parameter gives
the user the flexibility of specifying the attributes derived in
Section III-A: ordering, remote completion, and atomicity.
In addition to RMA operations with configurable attributes,
blocking RMA operations need to be supported. An addi-
tional attribute, blocking, can be used to achieve this. By
setting the blocking attribute, the user can do single call
RMA updates. The user may choose to set the attributes
either at the level of a communicator or on a per-call
basis. Also, the type representation of target_mem in this
interface needs thorough consideration; the address space
from which this call is made, i.e. the address space of
the origin_rank, may be different from that of the
target_rank. For example, the origin may be in a 32-
bit address space where as the target may require 64-bit
addressing (see Section III-B3). Hence the target needs to be
represented by an object that can encompass this information
(target_mem is further discussed in Section V). Finally,
the request parameter in the interface may be used to check
for completion of the RMA (using MPI_Wait, MPI_Test,
and variants) for the calls without the blocking attribute.
If the remote completion attribute is set, the completion is
remote, otherwise it is local.

An interface for RMA Get operation follows. In both
cases, origin represents the initiator of the call (hence
origin_rank is the rank of a process that initiates the Put

or Get) and target represents the process whose memory
is being accessed remotely.
MPI_RMA_get(origin_addr, origin_count,

origin_datatype, target_mem, target_disp,
target_count, target_datatype,
target_rank, comm, RMA_Attributes,
request)

Similar operations for an RMA Accumulate may also
be provided. However, since all three of the Get, Put,
and Accumulate RMA operations have similar semantics, a
single interface to represent all three of the above operations
is an alternative.
MPI_RMA_xfer(rma_optype,accumulate_optype,

origin_addr, origin_count,
origin_datatype, target_mem, target_disp,
target_count, target_datatype,
target_rank, comm, RMA_Attributes,
request)

In this operation, the rma_optype can be used indicate
whether this call is a Put, a Get or an Accumulate. The
advantage of such an optype to represent this call is that
in the future, this optype may be used for expanding the
interface. One example of such expansion is the invocation
of a remote function (a remote method invocation) or
signaling a remote thread.

The interface for MPI_RMA_xfer lets the user set the
remote completion attribute and verify remote completion of
each individual RMA. A useful, less restrictive alternative is
to not set the remote completion attribute for each individual
RMA and yet allow for checking remote completion of a
subset of remote memory accesses to a particular destination.
MPI_RMA_complete(comm, target_rank)

IN comm the communicator
IN target rank rank of the target of this completion

This operation allows us to check for remote completion
of all previous remote memory accesses to a particular
target_rank. However, to do this for every rank whose
memory has been accessed may become a programming bur-
den. To alleviate this, a value of MPI_ALL_RANKS for the
target_rank can be used to indicate that the operation is
to be done across all the ranks in the communicator. Using
MPI_ALL_RANKS for target_rank allows us to replace:
for target_rank=first_rank through

target_rank=last_rank in the communicator
comm

do MPI_RMA_complete(comm,target_rank)

with:
MPI_RMA_complete(comm,MPI_ALL_RANKS)

However, if all the processes in the communicator wanted
to do this collectively, it may be possible to perform addi-
tional implementation optimizations with prior knowledge of
the participation of remote processes in the complete call.
Hence, an interface to do this collectively is useful.



MPI_RMA_complete_collective(comm)

MPI_RMA_complete and its collective version are strict
synchronization operations. Additional weaker synchroniza-
tion mechanisms for RMA will give programmers flexibility
in the kind of synchronization they use. The ordering at-
tribute allows for ordering between two RMA operations.
This is a weaker form of synchronization than remote
completion. However, instead of setting the ordering at-
tribute for each individual RMA, the users may benefit from
an operations that orders among sets of RMA operations
(similar to shmem_fence).

MPI_RMA_order(comm, target_rank)

IN comm the communicator
IN target rank rank of the target of this ordering

Similar to its usage in MPI_RMA_complete,
MPI_ALL_RANKS may be used to order among sets
of operations with all processes in the communicator with
a single call. A collective version of this interface would be

MPI_RMA_order_collective(comm)

V. STRAWMAN API DISCUSSION

The strawman proposal attempts to address some of
the limitations of the MPI-2 RMA model. Issues with
MPI_Win and active target have been addressed. The ob-
ject representing the target memory, target_mem, need
not be allocated collectively. The user is responsible for
passing the target_mem object to the MPI processes
that need to access memory remotely. Collective allocation
of target_mem and interfaces to associate existing user
memory (heap/stack) to a target_mem object are currently
being discussed and formulated. Concurrent Put/Get opera-
tions targeting overlapping memory regions are not defined
as erroneous. There is no default restriction on concurrent
updates to different target memory objects that may be
representing overlapping regions in target memory. The
user may choose to impose this restriction by configuring
RMA attributes. Datatypes are supported, hence application
developers and HPC language community can use these
interfaces to transfer noncontiguous data.

Only a few configurable attributes are listed. A more
thorough investigation of the application and the HPC
language domain may bring out other attributes useful
for RMA operations. Remote method invocation (RMI) or
active message support is not included. This is primarily
because supporting these operations requires a thorough
investigation of the ability of current and upcoming networks
and operating systems to support such a feature. On some
architectures (such as the ones described in Section III-B3),
it is not trivial to define correct behavior of such a feature.
The MPI Forum has formed a working group to investigate
active messages and RMI. Interfaces for allocating the object

representing the target memory, target_mem, or interfaces
for associating the target_mem object with user memory
are not described in this paper. This requires a thorough
analysis of operating system space and network interconnect
requirements (the network interconnect may require the
memory to be registered, for example). Read-Modify-Write
(RMW) operations (fetch-and-increment, compare-and-swap
etc.) are not described in this paper. RMW operations with
semantics similar to RMA are being discussed in the MPI
forum as a part of this strawman proposal. Two kinds of
Read-modify-write operations, one for conditional RMW
and other for unconditional RMW are being considered.

There are some issues that need to be addressed with
respect to the implementation of these interfaces on dif-
ferent architectures. Cache coherence (or lack of it) poses
interesting problems. Networks today do not have support
for atomically accessing arbitrary sections of remote mem-
ory. However, the need for atomic updates exists in HPC
languages and applications. Working around the lack of this
support in networks today is a challenge and poses imple-
mentation overheads. Mechanisms such as a communication
thread that acts as a serializer may be required to guarantee
an atomicity attribute when the HPC system lacks support
for this. This may impact the ability to provide an efficient
MPI RMA on platforms that lack both threads and support
for the necessary RMA operations.

A. Prototype Implementation

Efficient implementations of such an RMA model require
mechanisms to selectively guarantee the attributes based
on the environment. When the underlying architecture and
network interconnect have mechanisms to guarantee these
attributes, implementation is trivial. However, when such
mechanisms are not available, guaranteeing these attributes
may incur software overhead. The highest performance
penalty will be incurred to enforce the atomicity guarantee.
There are effective serializers such as additional execution
contexts (additional thread or process) to achieve this. In the
absence of an efficient serializer, a very coarse grain (MPI
Process level) access control may serve as an alternative. In
the absence of either of these mechanisms, one has to rely
on MPI progress (with associated loss of efficiency).

We performed a few basic experiments on a Cray XT5
system. Cray MPT 3.1 was used, and the prototype RMA
code was written using the Portals communication library.
The Portals library on the Cray XT allows the user to check
for remote completion of a message via an Event Queue
mechanism. Our objective was to evaluate the performance
of interfaces that give a choice of completion and con-
sistency attributes. Hence we measure the communication
cost associated with each individual attribute for an imple-
mentation that uses two different kinds of serializers: 1) a
communication thread, and 2) coarse grain MPI process level
access control.
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Figure 2. The cost of each attribute on the Cray XT5

In the experiment, seven MPI processes (one on each of
the XT5 nodes) concurrently do 100 puts to overlapping
memory regions on process 0, followed by a single RMA
Complete call. The experiment does these puts first with no
attributes, then with ordering set, followed by remote com-
pletion set, and finally with atomicity attribute. The Blocking
attribute is always set in this example to use single call RMA
update. Figure 2 shows the time taken for 100 RMA put
operations and one RMA Complete operation for data sizes
varying from 8 bytes to 1 kilobyte. Since message ordering
is a natural property of the Cray XT5 network, the line
representing ordering attribute overlaps the line representing
the case with no attributes. The objective of this experiment
is to show the best case behavior with no attributes and
the worst case behavior with the atomicity attribute. Note
that when a communication thread is used as a serializer,
despite seven different processes doing the put operation
to overlapping memory regions, they can be serialized and
atomicity attribute enforced with low overhead. However,
with a coarse grain serializer, such as the process level lock
used in this example to implement atomicity attribute, there
is a significant performance penalty.

VI. RELATED RMA API

The Aggregate Remote Memory Copy Interface (ARMCI)
library [28] and GASNet [29] are two communication sub-
systems that support RMA styled communication API and
are used by Global Address Space languages and libraries.
ARMCI is used by the Global Arrays Toolkit [17]. GASNet
is the communication layer for the Berkeley UPC compiler
[14]. Suitability of ARMCI, GASNet and some of the other
existing RMA interfaces for use with MPI is discussed in
detail by Buntinas and Gropp [30].

ARMCI has support for contiguous, vector and strided
RMA Put, Get and Accumulate operations. Both blocking
and non-blocking versions of these operations are supported.
All blocking operations are ordered by the library and all
non-blocking operations have no ordering guarantee. Ac-
cumulate operations are serialized. MPI-2 standard allowed
for all the reduce operations to be done as a part of the

Accumulate operation. In ARMCI Accumulate only allows
an operation similar to a daxpy where x is the remote
memory and y and a are inputs to the accumulate operation.
The primary addition that the strawman MPI-3 RMA API
offers over the model supported by ARMCI is flexibility
in the attributes of the RMA operation and more powerful
completion semantics. For example, it is possible to have a
blocking unordered RMA operation with the strawman API
proposed here for MPI-3. It is also possible to check local or
remote completion of a subset of RMA operations. Neither
of these is possible with the current ARMCI API.

GASNet has a core API based on the Active Mes-
sage paradigm. GASNet has different interfaces for short,
medium and long active messages. No particular ordering
is guaranteed for these operations nor is it possible to
specify any. In addition to the core API, GASNet also
specifies an extend API that supports RMA Put and Get
operations. One of the difference between the strawman API
proposed here and GASNet RMA API is the support for
accumulate operation – GASNet API does not have explicit
interfaces for doing the Accumulate operation. The MPI-3
RMA strawman interfaces described in this paper include
the accumulate operation. Another difference is the support
for non-contiguous data transfers – the current GASNet
extend API RMA specification (version 1.8) does not include
support for non-contiguous data transfers. The proposed
strawman API for MPI-3 RMA allows for datatypes and
hence allows for both heterogeneity and noncontiguous
data.

VII. CONCLUSIONS

We have discussed the limitations of the existing MPI-2
RMA interface and the need for providing an interface that
better meets the requirements of applications, libraries, and
PGAS languages. We have presented a strawman proposal
that incorporates many of the needed features. We note that
the proposed interface is only an initial draft and not the final
MPI-3 RMA design. We hope the proposal will help initiate
a discussion in the broader community to better define the
goals, scope, and design of an RMA interface in MPI-3.
We invite feedback from vendors, application developers and
other users interested in RMA communication.
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